Did you know?
The largest hadrosaurid species discovered to date is Shantungosaurus giganteus. First described in China in 1973, this dinosaur is estimated to have been forty-nine feet long and weighed seventeen tonnes. The dinosaur’s skull measured over five feet in length.
MSc Hadrosaur Mandibular Disparity Study
Supervisors: Professor Mike Benton, Professor Emily Rayfield, Dr. James L. King.
My MSc thesis project focused on hadrosaur mandibular development across the Late Cretaceous, incorporating an Ornithopod outgroup. The project aimed to evaluate the role of feeding adaptation throughout hadrosaur evolution through a multivariate study of 74 hadrosaur taxa to see how the lower dentary of hadrosaurs changed throughout their evolution from 88-66 Ma.
The study involved creating multivariate analyses of data in R studio, plotting a time calibrated phylogeny and morphospace plots displaying PC1 and PC2 jaw function systems for 74 hadrosaur taxa. 2D landmarking data was obtained using tpsDig, tpsRelw32 and tpsUtil32 for 29 hadrosaur specimens in the study to assess jaw shape change, with Generalised Procrustes Analysis (GPA) and Principal Components Analysis (PCA) normalising the shape data.
Histogram bar plot and box plots displayed jaw disparity within the clades. Timeline and time box plots were used to display times of significant variation of specimens across geological time.
Results suggested macroevolution of hadrosaurs on a grand scale with jaw specialisation found at the root of the non-hadrosaurid ornithischian clade. Variations of the angular facet, surangular and coronoid process suggested hadrosaurs developed more refined feeding apparatus across their evolution.
These developments led to specialisation and species richness across the Late Cretaceous enabling global dominance. The refinement of the dentary aided their success and helped hadrosaurs exploit their own ecological niches.
Details of the non-hadrosaurid ornithischian specimens and hadrosaurid specimens analysed in this study displayed below (Table S1).
You can click on the highlighted specimens below which will take you to their designated profile.
| Taxon | Family | FAD | LAD | Specimen |
| Dryosaurus altus | Dryosauridae | 150.8 | 145.5 | CM 3392 |
| Mantellisaurus atherfieldensis 1 | Hadrosauroidea | 130 | 125 | OUMNH PAL-K.59014b/p |
| Mantellisaurus atherfieldensis 2 | Hadrosauroidea | 130 | 125 | NHMUK R11521 |
| Bolong yixianensis | Hadrosauroidea | 125.45 | 122.46 | YHZ-001 |
| Jinzhousaurus yangi | Hadrosauroidea | 125.45 | 122.46 | IVPP V12691 |
| Sirindhorna khoratensis | Hadrosauroidea | 130 | 112.6 | NRRU3001-167 |
| Xuwulong yueluni | Hadrosauroidea | 125.45 | 112.6 | GSGM-F00001 |
| Eolambia caroljonesa 1 | Hadrosauroidea | 105.3 | 99.7 | CEUM 34357 |
| Eolambia caroljonesa 2 | Hadrosauroidea | 105.3 | 99.7 | CEUM 9758 |
| Jeyawati rugoculus | Hadrosauroidea | 94.3 | 89.3 | MSM P4166 |
| Eotrachodon orientalis | Hadrosauroidea | 85.8 | 84.9 | MSC 7949 |
| Acristavus gagslarsoni | Hadrosauroidea | 84.9 | 70.6 | MOR 1155 |
| Brachylophosaurus canadensis | Hadrosauroidea | 84.9 | 70.6 | MOR 1071 |
| Kritosaurus navajovius 1 | Hadrosauroidea | 84.9 | 70.6 | AMNH 5799 |
| Kritosaurus navajovius 2 | Hadrosauroidea | 84.9 | 70.6 | USNM 8629 |
| Secernosaurus koerneri | Hadrosauroidea | 83 | 66 | MACN RN 142 |
| Willinakaqe salitralensis 1 | Hadrosauroidea | 84.9 | 66.43 | MPCA-Pv SM 6 |
| Willinakaqe salitralensis 2 | Hadrosauroidea | 84.9 | 66.43 | MPCA-Pv SM 3 |
| Gryposaurus latidens | Hadrosauroidea | 85.8 | 70.6 | AMNH FARB 5465 |
| Gryposaurus monumentensis | Hadrosauroidea | 84.9 | 70.6 | RAM 6797 |
| Gryposaurus notabilis | Hadrosauroidea | 84.9 | 70.6 | MSNM V345 |
| Prosaurolophus maximus | Hadrosauroidea | 84.9 | 70.6 | CMN 2870 |
| Saurolophus angustriostris 1 | Hadrosauroidea | 70.6 | 66.43 | MPC 100/706 |
| Saurolophus angustriostris 2 | Hadrosauroidea | 70.6 | 66.43 | PIN 551/407 |
| Kundurosaurus nagornyi | Hadrosauroidea | 70.6 | 66.43 | AENM 2/846 |
| Edmontosaurus regalis | Hadrosauroidea | 70.6 | 66.43 | CMN 2289 |
| Edmontosaurus annectens | Hadrosauroidea | 70.6 | 66.43 | DMNH EPI1493 |
| Edmontosaurus sp | Hadrosauroidea | 70.6 | 66.43 | CM 38321 |
| Pararhabdodon isonensis | Hadrosauroidea | 70.6 | 66.43 | IPS SRA 27 |
| Tsintaosaurus spinorhinus | Hadrosauroidea | 84.9 | 70.6 | IVPP V725 |
| Parasaurolophus cyrtocristatus | Hadrosauroidea | 84.9 | 70.6 | DMNH EPV.132300 |
| Parasaurolophus tubicen | Hadrosauroidea | 84.9 | 70.6 | NMMNH P-25100 |
| Parasaurolophus walkeri | Hadrosauroidea | 84.9 | 70.6 | ROM 768 |
| Corythosaurus casuarius 1 | Hadrosauroidea | 84.9 | 70.6 | AMNH 5240 |
| Corythosaurus casuarius 2 | Hadrosauroidea | 84.9 | 70.6 | CM 11376 |
| Corythosaurus excavutus | Hadrosauroidea | 84.9 | 70.6 | TMP 1992.036.0250 |
| Hypacrosaurus stebingeri | Hadrosauroidea | 84.9 | 70.6 | MOR 549 |
| Magnapaulia laticaudus | Hadrosauroidea | 84.9 | 70.6 | LACM 20874 |
| Sahaliyania elunchunorum | Hadrosauroidea | 70.6 | 66.43 | GMH W451 |
| Velafrons coahuilensis | Hadrosauroidea | 84.9 | 70.6 | CPC 59 |
| Tlatolophus galorum | Hadrosauroidea | 73 | 72.5 | CIC/P/147 |
| Olorotitan arharensis | Hadrosauroidea | 70.6 | 66.43 | AEHM 2/845 |
| Hypacrosaurus altispinus | Hadrosauroidea | 70.6 | 66.43 | CMN 8501 |
| Arenysaurus ardevoli | Hadrosauroidea | 70.6 | 66.43 | MPZ2008-258 |
| Blasisaurus canudoi | Hadrosauroidea | 70.6 | 66.43 | MPZ 99/665 |
| Yamatosaurus izanagii | Hadrosauroidea | 71.94 | 71.69 | MNHAH D1-033516 |
| Lambeosaurus clavinitialis | Hadrosauroidea | 84.9 | 70.6 | VP.003222 |
| Lambeosaurus magnicristatus | Hadrosauroidea | 84.9 | 70.6 | CMN 8705 |
| Lambeosaurus lambei | Hadrosauroidea | 84.9 | 70.6 | CMN 2869 |
| Charonosaurus jiayinensis | Hadrosauroidea | 70.6 | 66.043 | CUST J-V1251-57 reconstruction |
| Iguanodon bernissartensis | Iguanodontidae | 145.5 | 112.46 | PAL-KZ.26569/p |
| Altirhinus kurzanovi | Iguanodontidae | 109 | 99.7 | PIN 3386/8 |
| Hypsilophodon foxii | Neornithiscia | 130 | 125.45 | BMNH R2477 |
| Anabisetia saldivia | Ornithischia | 93.9 | 92 | MCF-PVPH-74 |
| Tenontosaurus tilletti | Ornithischia | 112.6 | 99.7 | OMNH 58340 |
| Lanzhousaurus magnedens | Ornithischia | 129.4 | 125 | GSLTZP01-001 |
| Kukufeldia tilgatensis | Ornithischia | 139.8 | 132.9 | NHMUK 28660 |
| Batyrosaurus rozhdestvensk | Ornithischia | 83.6 | 72.1 | AEHM 4/1 |
| Hypselospinus fittoni | Ornithischia | 140.2 | 136.4 | NHMUK R1831 |
| Equijubus normani | Ornithischia | 112.6 | 105.3 | IVPP V 12534 |
| Protohadros byrdi | Ornithischia | 99.7 | 94.3 | SMU 74582 |
| Tethyshadros insularis | Ornithischia | 84.9 | 66.43 | SC 57021 |
| Bactrosaurus johnsoni | Ornithischia | 84.9 | 70.6 | AMNH 6553 |
| Gilmoreosaurus mongoliensis | Ornithischia | 84.9 | 70.6 | AMNH FARB 30654 |
| Shuangmiaosaurus gilmorei | Ornithischia | 105 | 99.7 | LPM0166 |
| Telmatosaurus transsylvanicus | Ornithischia | 70.6 | 66.43 | BMNH R3386 |
| Lophorhothon atopus | Ornithischia | 84.9 | 70.6 | YPM VPPU 023508 |
| Levnesovia transoxiana | Ornithischia | 94.3 | 89.3 | ZIN PH 466/16 |
| Probactrosaurus gobiensis | Ornithischia | 130 | 99.7 | PIN 2232/1 reconstruction |
| Haya griva | Parksosauridae | 83.6 | 72.1 | IGM 100/2017 |
| Changchunsaurus parvus | Parksosauridae | 112.6 | 93.9 | JLUM L0403-j-Zn2 |
| Rhabdodon priscus | Rhabdodontidae | 70.6 | 66.43 | N/A: Paper Allain & Suberbiola, 2002. |
| Zalmoxes robustus 1 | Rhabdodontidae | 70 | 66 | NHMUK R4912 |
| Zalmoxes robustus 2 | Rhabdodontidae | 70 | 66 | BMNH R.3392 |
| Mochlodon vorosi | Rhabdodontidae | 85 | 80 | MTM V 2010.105.1 |
You can learn more about hadrosaurids at the dinosaur profile page below.
Triassic Microfauna of Hapsford Bridge, Vallis Vale, Frome
Supervisors: Professor Mike Benton and Dr Chris Duffin.
This was a project I worked on with Professor Mike Benton and co-authors as an Honorary Research Associate on the At The Feet of the Dinosaurs Internship Programme at the University of Bristol. Working within the Palaeobiology Research Group the project saw me take part in fieldwork, identifying, sorting, and describing the Rhaetian age fossils taken from limestone samples at Hapsford Bridge, Vallis Vale.
The geological site of Vallis Vale is a Site of Specific Scientific Interest (SSSI) displaying Mesozoic sediments which rest on Carboniferous limestone. The stratigraphy begins with the Rhaetian in the east end, stepping up to the Middle Jurassic at the west end of the Vallis.
The fossils collected were supported by fossil collections from Charles Copp, helping to display the Rhaetian Transgression which enveloped over the Carboniferous limestone at Vallis Vale.
The project identified 1,740 specimens with 763 non-bone fragments including 76 teeth and 687 other fossils elements. The Rhaetian bone bed layers display a variety of microverterbrates including four species of Triassic shark and two species of bony fish, alongside invertebrate fauna such as bivalves, echinoids, and trace fossils.
Results of the project can be accessed here.
Inspire Curiosity. Share the Wonders of Palaeontology. Your support helps bring fossils and prehistoric discoveries to life through engaging outreach and education. Donate today to help make science accessible to all!
Discover My Fieldwork Adventures!
Support the Science. Join the Expedition. Explore deep time with every dispatch. Subscribe to The Palaeo Minute newsletter and be part of the fossil journey.














You must be logged in to post a comment.